Essential Standards Chart Working in collaborative teams, determine which standards are essential for all students to master. Remember, all standards are not equal. For each standard selected, complete the remaining columns. ## **Unfinished Learning Document** | Of the list led Learning Document | | | | | | | | | |--|---|---|--|--|--|--------------------------------------|--|--| | What Is It We Expect All Students to Learn? | | | | | | | | | | Grade: 3 | Subject: ELA | Unit: 1
Explorers | Team Members: (names removed) | | | Team Members: (names removed) | | | | <u>Description of</u>
<u>Standard</u> | Example of Rigor | Prerequisite Skills | When Taught? | Common
Summative
Assessment | Extension
Standards | | | | | What is the essential standard to be learned? Describe in student-friendly vocabulary. | What does
proficient
student work
look like?
Provide an
example or
description. | What prior
knowledge, skills, or
vocabulary are
needed for a student
to master this
standard? | When will this
standard be taught? | What assessments
will be used to
measure student
mastery? | What will we do
when students
have already
mastered this
standard? | | | | | RI3.2: I can identify the main idea of a text and explain how the key details support the main idea. Success Criteria I can identify the main idea of text (written, highlighted, or through a series of options) | See IAR
digital library
for RI 3.2
(linked above) | RI2.2. Identify the main topic of a multi-paragraph text as well as the focus of specific paragraphs within the text. | Week 1: introduce
skill/Model
Week 2: Model & shared
practice
Week 3: Independent
Practice/small group with
feedback
Week 4: Independent
practice & Assessment | Week 1: No assessment
Week 2: Formative
Week 3: Formative
Week 4: Summative
assessment | Practice with higher level text Introduce creating a summary using the main idea statement and key details Compare and contrast key details from two texts with similar main ideas | | | | | Determine specific details that best supports the main idea and explain in writing or through a series of options how the details support the main idea. | | | | |--|--|--|--| | | | | | ## MATH: SECOND-GRADE ESSENTIAL STANDARDS | Standard— Example—Rigor | | Prior Skills
Needed | Common
Assessment When Taught? | | Extension Skills | | |--|---|--|--|---|--|--| | What is the essential
standard to be learned?
Describe it in student-
friendly vocabulary. | What does proficient
student work look like?
Provide an example
and/or description. | What prior knowledge,
skills, and/or vocabulary
are needed to master
this standard? | What assessments will
be used to measure
student mastery? | When will this stan-
dard be taught? | What will we do when
students have learned
the essential standards? | | | I can compare whole
numbers to 1,000 by
using symbols
<, =, >. | Example: What goes in the box to make this problem correct? 62 21 + 31 <>= + | I know the place value
of digits from 1 to
1,000.
I understand key
words: greater than,
less than, fewer, least,
and most. | CFAs designed by the second-grade team are administered halfway through and at the completion of the unit. | September | I can compare money
written in decimal
form. | | | I can use commuta-
tive and associative
rules to simplify
addition and check
my answers. | Example: Which
problem can you use
to check your answer
for $9 + 5 = 14$?
13 - 5 = 9
14 - 9 = 5
5 + 9 = 14 | I understand rela-
tionships within fact
families. | Same as above | October | I can use commutative
and associative rules
to simplify multipli-
cation and check my
answers. | | | Essential Standards Chart: What Do We Expect Students to Learn? | | | | | | | | | | | |--|------|--|---|--|--|--|--|---|---|--| | Grade 9 Sub | | 0 | Concept. | Semester | Two | Team
Members | J. Rudasill | N. Duncan | | | | | Subj | ect | | | | | P. Barnard | M. McGrannahan | | | | | | | Filiy | Physics | | | Members | C. Hyslope | | | | Standard or | | Example or | | Prior Skills | | Common | When | Enrichment | | | | Description | | Rigor | | Needed | | Assessment | Taught? | | | | | What is the essential
standard to be learned?
Describe in student-friendly
vocabulary. | | ed? | What does proficient student work look like? Provide an example and/or description. | | What prior knowledge,
skills, and/or vocabulary
are needed for a student
to master this standard? | | What assessment(s) will be
used to measure student
mastery? | When will standard(s) be taught? | What will we do when
students have learned the
essential standard(s)? | | | I can explain how energy is stored and transferred. | | Identify the positions at which energy converts to varying forms and where they are equal. Apply calculations associated with the skill. | | Conservation of energy, potential energy; kinetic energy | | Calculate the potential and kinetic energy of a skateboarder in a half pipe at the top, middle, and bottom of the process. | Early January | Design a roller coaster.
Calculate and label KE, V,
and G forces. | | | | I can describe the properties of magnetism and electromagnetism. | | rties | Create an electromagnetic coil that functions properly. Explain how to increase and decrease electric output. | | | inets;
iron; polarity;
arge particles | Draw magnetic field lines
around a bar magnet and
properly label all lines and
fields. | January | Apply electromagnetism to
everyday applications and
machines. | | | I can explain the relationships among current, voltage, and resistance. | | Create a pa
circuit and p
current, volt | properly | | te circuition circuit flow open | | Measure current and resistance in a parallel circuit and calculate these as well. Compare calculated and actual. Determine reasons for errors and differences. | February | Design and build a working speaker. | | | I can explain the relationships among energy, trequency, and wavelength. A string vibrates at its fundamental frequency. Explain what happens to the speed of the wave on the string when the frequency is increased, causing the string to vibrate at its second harmonic. | | | | Wavelength;
period; ampli
harmonic; for
transverse; o
medium; inte | tude;
ngitudinal;
scillation; | Using words such as
wavelength and energy,
explain why radio and low-
powered microwaves are
used for cell phones and not
other waves such as
ultraviolet. | March-April | Explain how hearing slowly occurs in the auditory system. | | |